Invisible Problems

On the job

Let’s imagine being a C++ programmer
We are ok with the language, but not super secure
We are tasked with upgrading a part of an older system

And in the section we are now, the best solution is a struct with two integers

Lets do this

struct VerylImportant
{

int myOne;
int myTwo;

};

“Please make sure everything is
correctly initialized, we can’t have
junk values herel!”

Zero is default? Right?

struct VerylImportant
{

int myOne;
int myTwo;

VeryImportant () : myOne (0), myTwo(0) {}
}i

“| want to be able to set the
values when | create the

We got this!

struct VeryImportant
{
int myOne;
int myTwo;
VeryImportant() : myOne (0) , myTwo (0) {}
VeryImportant (int aOne, int aTwo)
: myOne (aOne) , myTwo (aTwo) {}

“This object has to be correct
when it's copied, can you do
that?”

The rule of how many?

struct VeryImportant
{
int myOne;
int myTwo;
VeryImportant () : myOne (0), myTwo (0) {}
VeryImportant (int aOne, int aTwo) : myOne (aOne), myTwo (aTwo) {}
VeryImportant (const VeryImportanté& aVery)
: myOne (aVery.myOne) , myTwo (aVery.myTwo) {}
VeryImportanté& operator=(const VeryImportant& aVery)
{
myOne = aVery.myOne;
myTwo = aVery.myTwo;
return *this;

“We upgraded to the new
compiler, it supports move
semantics, can you make sure
everything is movable?”

struct VeryImportant
{
int myOne;
int myTwo;
VeryImportant () : myOne (0) , myTwo (0) {}
VeryImportant (int aOne, int aTwo) : myOne (aOne), myTwo (aTwo) {}
VeryImportant (const VeryImportant& aVery)
myOne (aVery.myOne) , myTwo (aVery.myTwo) {}

VeryImportant& operator=(const VeryImportant& aVery)
{

myOne = aVery.myOne;

myTwo = aVery.myTwo;

return *this;
}
VeryImportant (VeryImportant&& aVery)

myOne (aVery.myOne) , myTwo (aVery.myTwo) {}

VeryImportanté& operator=(VeryImportant&& aVery)
{

myOne = aVery.myOne;

myTwo = aVery.myTwo;

return *this;

“Why is our new
Verylmportant struct slower
than our old library?”

Searching starts

You look over your code, nothing

Searching starts

You look over your code, nothing

You look at all the call sites, nothing

Searching starts

You look over your code, nothing
You look at all the call sites, nothing

You start doing git blame diffs, nothing

Searching starts

You look over your code, nothing
You look at all the call sites, nothing
You start doing git blame diffs, nothing

You go into assembly...

404dc4 callg 403720 <memcpy@plt>

“Why is my code slow?”

You start googling something like that
Sprinkle in memcpy and structs

A certain word keeps popping up

“Why is my code slow?”

You start googling something like that
Sprinkle in memcpy and structs

A certain word keeps popping up

Trivial

“Objects of trivially-copyable types are the only
C++ objects that may be safely copied with
std::memcpy”

C++ named requirements: TriviallyCopyable

Requirements

» Every copy constructor is trivial or deleted
¢ Every move constructor is trivial or deleted
» Every copy assignment operator is trivial or deleted
» Every move assignment operator is trivial or deleted
» at least one copy constructor, move constructor, copy assignment operator, or move assignment operator is non-
deleted
¢ Trivial non-deleted destructor
This implies that the class has no virtual functions or virtual base classes.

struct VeryImportant
{
int myOne;
int myTwo;
VeryImportant () : myOne (0) , myTwo (0) {}
VeryImportant (int aOne, int aTwo) : myOne (aOne), myTwo (aTwo) {}
VeryImportant (const VeryImportanté& aVery)
myOne (aVery.myOne) , myTwo (aVery.myTwo) {}

VeryImportant& operator=(const VeryImportant& aVery)
{

myOne = aVery.myOne;

myTwo = aVery.myTwo;

return *this;
}
VeryImportant (VeryImportant&& aVery)

myOne (aVery.myOne) , myTwo (aVery.myTwo) {}

VeryImportanté& operator=(VeryImportant&& aVery)
{

myOne = aVery.myOne;

myTwo = aVery.myTwo;

return *this;

Trivial default constructor
The default constructor for class T is trivial (i.e. performs no action) if all of the following is true:

* The constructor is not user-provided (i.e., is implicitly-defined or defaulted on its first declaration)
¢ T has no virtual member functions
¢ T has no virtual base classes

T has no non-static members with default initializers. (since C++11)

e Every direct base of T has a trivial default constructor
e Every non-static member of class type has a trivial default constructor

We're back here

struct VeryImportant
{
int myOne;
int myTwo;
VeryImportant () : myOne (0), myTwo (0) {}
VeryImportant (int aOne, int aTwo) : myOne (aOne), myTwo (aTwo) {}

2500

2000

1500

1000

TrivialBench

NotTrivialBench

The only healthy choice...

#define ENFORCE TRIVIAL(t) \
static_assert(std::is_standard layout v<t>); \

static assert(std::is_trivially copyable v<t>); \

static assert(std::is_trivially copy assignable v<t>); \
static assert(std::is_trivially copy constructible v<t>); \
static_assert(std::is trivially move assignable v<t>); \
static_assert(std::is trivially move constructible v<t>); \
static assert(std::is_trivially destructible v<t>);

#define TRIVIAL STRUCT (name, ...) \
struct name VA ARGS ; \
ENFORCE_IRIVIAL(name);

TRIVIAL STRUCT (VeryImportant,
{
int myOne;
int myTwo;
VeryImportant () : myOne (0) , myTwo (0) {}
VeryImportant (int aOne, int aTwo) : myOne (aOne),

myTwo (aTwo) {}
})

My wish

struct [[bikeshed trivially copyable]] VeryImportant
{

int myOne;
int myTwo;
VeryImportant() : myOne (0) , myTwo (0) {}
VeryImportant (int aOne, int aTwo)
: myOne (aOne) , myTwo (aTwo) {}

My wish

struct [[bikeshed trivially copyable]] VeryImportant
{

int myOne;

int myTwo;

VeryImportant() : myOne (0) , myTwo (0) {}

VeryImportant (int aOne, int aTwo) : myOne (aOne),
myTwo (aTwo) {}

VeryImportant (const VeryImportanté& aVery)

: myOne (aVery.myOne) , myTwo (aVery.myTwo) {}
// Compile Error

};

Twitter: s===m .

e g N \
mﬁdu no‘ﬁ'e ’ L e Ay RN
» SR

ATV A -

@olafurw

